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Abstract
Based on the heat bath system approach where the bath is nonlinearly modulated
by an external Gaussian random force, we propose a new microscopic model
to study directed motion in the overdamped limit for a nonequilibrium
open system. Making use of the coupling between the heat bath and
the external modulation as a small perturbation, we construct a Langevin
equation with multiplicative noise- and space-dependent dissipation and the
corresponding Fokker–Planck–Smoluchowski equation in the overdamped
limit. We examine the thermodynamic consistency condition and explore
the possibility of observing a phase-induced current as a consequence of state-
dependent diffusion and, necessarily, nonlinear driving of the heat bath by the
external noise.

PACS numbers: 05.40.−a, 02.50.Ey, 05.60.−k

In recent times, the phenomena of noise-induced transport under nonequilibrium conditions
have gained wide interdisciplinary interest where the interplay of fluctuations and nonlinearity
of the system plays an important role [1–5]. Exploitation of the nonequilibrium fluctuations
present in the medium helps us to generate phase-induced-directed motion of the Brownian
particle. The presence of spatial anisotropy in the potential together with nonequilibrium
perturbations enables one to extract the useful work from random fluctuations without violating
the second law of thermodynamics [3]. This led us to its wide applicability in explaining the
dynamics of molecular motors [2, 6], directed transport in photovoltaic and photoreflective
materials [7], and the efficiency of tiny molecular machines in a highly stochastic environment
[4, 5, 8], realization of the ratchet effect in cold atom [9], and the construction of artificial
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molecular rotors that produce controlled directional motion mimicking molecular motor
protein [10]. In some special cases, one can generate directed motion even in a symmetric
potential due to state-dependent diffusion. For such systems, the state-dependent diffusion
coefficient, D(q), felt by the Brownian particle could arise either due to the space-dependent
friction or the presence of local hotspots [2, 3, 11, 12].

To the best of our knowledge, in almost all the above-mentioned cases the corresponding
Langevin equation is either written phenomenologically or is constructed from a microscopic
system heat bath Hamiltonian model where the associated heat bath is in thermal equilibrium.
To generate directed motion one then applies an external perturbation, time periodic force
or correlated random force, to break the symmetry of the force field as equilibrium thermal
fluctuations are unable to create spontaneous symmetry breaking. Symmetry breaking can also
be achieved by considering a nonlinear coupling between the Brownian particle and thermal
heat bath thereby generating a multiplicative noise term in the resulting Langevin equation
which in turn gives a position-dependent diffusion term effectively creating a phase-induced
bias in the dynamics. In the present paper, we propose a system heat bath model where the heat
bath is weakly modulated by an external noise. Although the microscopic model we present
here has a close kinship to our earlier approach [13] to study escape from a metastable state
within the context of external noise-modulated heat bath, the present formalism differs from
our earlier model in the following way. The heat bath–external noise coupling is considered
to be nonlinear and in addition to that the system is also nonlinearly coupled with the heat
bath thereby resulting in a nonlinear multiplicative Langevin equation and the corresponding
Fokker–Planck–Smoluchowski equation with space-dependent diffusion. We then explore
the possibility of observing directed transport as a result of phase difference between the
coupling function and the periodic potential in which the Brownian particle is moving. Our
theoretical model can be tested experimentally to study the directional motion of artificial
chemical rotors in photoactive solvent [10]. To observe the effect of external stochastic
modulation, one can carry out the experiment in a photochemically active solvent (the heat
bath) where the solvent is under the influence of external monochromatic light with fluctuating
intensity of a wavelength which is absorbed solely by the solvent molecules. As a result of
this, the modulated solvent heats up due to the conversion of light energy into heat energy by
radiationless relaxation process and an effective temperature-like quantity develops due to the
constant input of energy. Since the fluctuations in the light intensity result in the polarization
of the solvent molecules, the effective reaction field around the reactants gets modified [14].

To start with, we consider a classical particle of unit mass bilinearly coupled to a heat bath
consisting of N mass-weighted harmonic oscillators characterized by the frequency set ωj . In
addition to that, the heat bath is nonlinearly driven by an external noise ε(t). The Hamiltonian
for the composite system is

H = HS + HB + HSB + Hint, (1)

where HS = (p2/2) + V (q), is the system’s Hamiltonian with q and p being the coordinate
and momentum of the system particle, respectively, and V (q) is the potential energy function
of the system. HB + HSB = ∑N

j=1

[(
p2

j /2
)

+
(
ω2

j /2
){xj − cjf (q)}2

]
, where {xj , pj } are

the variables for the j th bath oscillator. The system–heat bath interaction is given by the
coupling term cjωjf (q), with cj being the coupling strength. We consider the interaction,
Hint = ∑N

j=1 κjg(xj )ε(t), between the heat bath and the external noise ε(t), where κj denotes
the strength of the interaction and g(xj ) is an arbitrary analytic function of the bath variables, in
general nonlinear. This type of interaction makes the bath variables explicitly time-dependent.
A large class of phenomenologically modeled stochastic differential equation may be obtained
from a microscopic Hamiltonian for particular choice of coupling function g(xj ). In what
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follows we have chosen g(xj ) = x2
j

/
2, which makes the spring constants of the bath oscillators

time-dependent. The external noise is stationary, Gaussian with the properties 〈ε(t)〉e = 0
and 〈ε(t)ε(t ′)〉e = 2Dδ(t − t ′), where D is the strength of the external noise and 〈·〉e implies
averaging over the external noise processes. From equation (1), we have the dynamical
equations for the system and bath variable

q̈(t) = −V ′(q(t)) + f ′(q(t))
∑

j

cjω
2
j {xj (t) − cjf (q(t))}, (2)

ẍj (t) +
{
ω2

j + κj ε(t)
}
xj (t) = cjω

2
j f (q(t)), (3)

where we have used g(xj ) = x2
j

/
2. To solve equation (3) for xj , we assume a solution of the

form

xj (t) = x0
j (t) + κjx

1
j (t), (4)

where x0
j (t) is the solution of the unperturbed equation of motion

ẍ0
j (t) + ω2

j x
0
j (t) = cjω

2
j f (q(t)). (5)

The physical situation that has been addressed here is the following, we consider that at t = 0,
the heat bath is in thermal equilibrium in the absence of the external noise ε(t). At t = 0+,
the external noise agency is switched on and the heat bath is modulated by ε(t) [13]. Then,
x1

j (t) must satisfy the equation

ẍ1
j (t) + ω2

j x
1
j (t) = −x0

j (t)ε(t), (6)

with the initial conditions x1
j (0) = p1

j (0) = 0. The solution of equation (6) is given by

x1
j (t) = − 1

ωj

∫ t

0
dt ′ sin ωj(t − t ′)x0

j (t
′) ε(t ′). (7)

The formal solution of equation (5) is given by

x0
j (t) = x0

j (0) cos ωj t +
p0

j (0)

ωj

sin ωj t + cjωj

∫ t

0
dt ′ sin ωj(t − t ′)f (q(t ′)), (8)

where x0
j (0) and p0

j (0) are the initial position and momentum, respectively, of the j th oscillator.
Now using this solution in equation (7) we have, after an integration by parts, the equation
of motion for x1

j (t) which gives the equations of motion for the bath variables xj (t) (from
equation (4)) as

xj (t) = [
x0

j (0) − cjf (q(0))
]

cos ωj t +
p0

j (0)

ωj

sin ωj t

+ cj

∫ t

0
dt ′ cos ωj(t − t ′)f ′(q(t ′))q̇(t ′) − κj

ωj

∫ t

0
dt ′ sin ωj(t − t ′)ε(t ′)x0

j (t
′).

(9)

Using the above solution in equation (2), we finally obtain the equation of motion for system
variable as

q̈(t) = −V ′(q(t)) + f ′(q(t))
∑

j

cjω
2
j

[{
x0

j (0) − cjf (q(0))
}

cos ωj t +
p0

j (0)

ωj

sin ωj t

]

−
∑

j

c2
jω

2
j f

′(q(t))

∫ t

0
dt ′ cos ωj(t − t ′)f ′(q(t ′))p(t ′)

−f ′(q(t))
∑

j

cj κjωj

∫ t

0
dt ′ sin ωj(t − t ′)ε(t ′)x0

j (t
′), (10)
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where p(t) = q̇(t) is the generalized momentum of the system variable. This equation can be
rewritten as

q̈(t) = −V ′(q(t)) − f ′(q(t))

∫ t

0
dt ′γ (t − t ′)f ′[q(t ′)]p(t ′) + f ′(q(t))F (t)

−f ′(q(t))

N∑
j

cj κjωj

∫ t

0
dt ′ sin ωj(t − t ′)x0

j (t
′)ε(t ′), (11)

where we have defined γ (t) and F(t) as, γ (t) = ∑N
j=1 c2

jω
2
j cos ωj(t) and F(t) =∑N

j=1 cjω
2
j [{xj (0) − cjf (q(0))} cos ωj t + (pj (0)/ωj ) sin ωj t]. At this point, we note that

the forcing term F(t) is deterministic as expected. It ceases to be deterministic when it is not
possible to specify all the x0

j (0)’s and p0
j (0)’s, i.e., the initial conditions of all the bath variables,

exactly. The standard procedure to overcome this problem is to consider a distribution of x0
j (0)

and p0
j (0) to specify the statistical properties of the bath-dependent forcing term F(t). The

distribution of the bath oscillators is assumed to be a canonical distribution of the Gaussian
form

W
[
x0

j (0), p0
j (0)

] = Z−1 exp

[
−HB + HSB

kBT

]
, (12)

where Z is the bath-partition function. This choice of the distribution function of bath variables
makes the internal noise F(t) Gaussian. It is now easy to verify the statistical properties of
F(t) as 〈F(t)〉 = 0 and 〈F(t)F (t ′)〉 = 2kBT γ (t − t ′), where kB is the Boltzmann constant
and T is the equilibrium temperature. 〈·〉 implies the average over the initial distributions of
bath variables which is assumed to be a canonical distribution of the Gaussian form as given
in equation (12). The second relation is the celebrated fluctuation–dissipation relation [15]
which ensures that the bath was in thermal equilibrium at t = 0.

To identify equation (11) as a generalized Langevin equation we must impose some
conditions on the coupling coefficients cj and κj , on the bath frequencies ωj and on the
number N of the bath oscillators that will ensure that γ (t) is indeed dissipative and the last
term in equation (11) is finite for N → ∞. A sufficient condition for γ (t) to be dissipative
is that it is positive definite and decreases monotonically with time. These conditions are
achieved if N → ∞ and if cjω

2
j and ωj are sufficiently smooth functions of j [17]. As

N → ∞, one replaces the sum by an integral over ω weighted by a density of state ρ(ω).
Thus, to obtain a finite result in the continuum limit the coupling function ci = c(ω) and
κi = κ(ω) are chosen [13, 16] as c(ω) = c0/ω

√
τ c and κ(ω) = κ0, where c0 and κ0 are

constants and τc is the correlation time of the heat bath. The choice κ(ω) = κ0 is the
simplest one where we assume that every bath mode is excited with the same intensity. This
simple choice makes the relevant term finite for N → ∞. Consequently, γ (t) becomes,
γ (t) = (

c2
0

/
τc

) ∫
dωρ(ω) cos ωt ; 1/τc may be characterized as the cutoff frequency of the

bath oscillators. The density of modes ρ(ω) of the heat bath is assumed to be Lorentzian,
ρ(ω) = (2/π)

[
τc

/(
1 + ω2τ 2

c

)]
. The above assumption resembles broadly the behavior of

the hydrodynamical modes in a macroscopic system [18]. With these forms of ρ(ω), c(ω)

and κ(ω) we have the expression for γ (t) as γ (t) = (
c2

0

/
τc

)
exp(−t/τc), which reduces

to γ (t) = 2c2
0δ(t) for vanishingly small correlation time τc and consequently one obtains a

δ-correlated noise process.
Taking into consideration all the above assumptions and assuming that the system variable

evolves much more slowly in comparison to the external noise ε(t), in the limit τc → 0,
equation (11) reduces to

q̈(t) = −V ′(q(t)) − γ [f ′(q(t))]2q̇(t) + f ′(q(t))F (t) + γ κ0f (q(t))f ′(q(t))ε(t), (13)
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where γ = c2
0 is the dissipation constant and the Langevin force F(t) is characterized by the

statistical properties

〈F(t)〉 = 0, 〈F(t)F (t ′)〉 = 2γ kBT δ(t − t ′). (14)

Equation (13) is the generalized Langevin equation for the system variable. At this juncture, it
is noteworthy that for f (q) = q, equation (13) reduces to q̈(t) = −V ′(q(t))− γ q̇(t) + F(t) +
γ κ0q(t)ε(t). Thus, for linear system–bath coupling (i.e. for f (q) = q), our Hamiltonian given
by equation (1) may be the starting point for the construction of a Langevin equation with
both additive and multiplicative noise, which has numerous applications in various fields of
physics, e.g. phase transition, etc. For harmonic potential, this equation has been extensively
studied by many authors in various contexts [19].

In the Langevin equation (13), the noise terms (internal and external) appear
multiplicatively and the dissipation is space-dependent. Using the method of van Kampen
[19] for nonlinear stochastic differential equations, the Fokker–Planck equation corresponding
to the Langevin equation (13) is given by [13, 19]

∂P

∂t
= − ∂

∂q
(pP ) +

∂

∂p
{λ(q)p + V ′(q)}P +

{
λ(q)kBT + γ 2κ2

0 D[f (q)f ′(q)]2
}∂2P

∂p2
,

(15)

where P = P(q, p, t) is the phase space probability density function and λ(q) = γ [f ′(q)]2

is the space-dependent dissipation function. Instead of handling two noise processes (internal
and external) independently, one can define an effective noise process ξ(t) and an auxiliary
function G(q) to obtain the same Fokker–Planck equation (15) from the following Langevin
equation:

q̈ = −V ′(q) − λ(q)q̇ + G(q)ξ(t), (16)

with

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t ′)〉 = 2δ(t − t ′), (17)

λ(q) = γ [f ′(q)]2, G(q) = f ′(q)
√

γ kBT + D(γ κ0)2f 2(q). (18)

That the Langevin equation (16) gives the same Fokker–Planck equation (15) can be verified
by using van Kampen’s methodology [19]. The construction of Langevin equation using an
effective noise term and an auxiliary function has been done earlier in the configuration space by
Wu et al [20], whereas we have written the Langevin equation (16) in the phase space. Thus, as
far as the equation for the evolution of probability density function is concerned, equation (16)
is the equivalent description of the stochastic differential equation (13). Equation (16)
is one of the key results of this work as it incorporates the effects of thermal noise F(t)

and the external noise ε(t) in an unified way even when the underlying noise processes are
multiplicative due to the nonlinear system–bath coupling and nonlinear modulation of the
heat bath by an external noise. It is important to mention here that equation (16) describes
a thermodynamically open system where there is no fluctuation–dissipation relation so that
the system will not reach at usual thermal equilibrium, instead, a steady state is attainable for
large t [13, 19]. From the computational point of view, generation of a single multiplicative
noise process is much more economical than to generate two separate multiplicative noise
processes.

In equation (16), the noise is multiplicative and the dissipation is space-dependent. In
the case of large dissipation, one eliminates the fast variables adiabatically to get a simpler
description of the system dynamics. The traditional approach to the elimination of fast
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variables for multiplicative noise processes does not always give the correct description. In
order to get the correct Langevin equation in the overdamped limit, we follow the method
of Sancho et al [21] and then using van Kampen’s lemma [22] and Novikov’s theorem [23]
we get the Fokker–Planck–Smoluchowski equation corresponding to equation (16) for the
probability density P(q, t) in the configuration space [21]:

∂P (q, t)

∂t
= ∂

∂q

1

λ(q)

[
V ′(q) +

∂

∂q

G2(q)

λ(q)

]
P(q, t). (19)

In the ordinary Stratonovich description [21], the Langevin equation corresponding to the
Fokker–Planck equation (19) is

q̇ = −V ′(q)

λ(q)
− G(q)G′(q)

[λ(q)]2
+

G(q)

λ(q)
ξ(t). (20)

Equation (20) differs from the Langevin equation, obtained by using the traditional way of
adiabatic elimination of fast variable, due to the presence of the second term on the right-hand
side. This term, G(q)G′(q)/[λ(q)]2, represents the effect of multiplicative noise in the process
of elimination of fast variable [21].

The stationary solution of equation (19) contains inhomogeneous effective temperature-
like term, a generalization of the Boltzmann factor for state-dependent diffusion in open
system, which arises due to the entanglement of the external driving with the nonlinearity of
the system heat bath coupling, a well-known effect in several contexts, e.g., Landauer Blow
torch effect [11]. In the absence of external bath modulation, i.e., when G(q) = f ′(q)

√
γ kBT ,

equation (19) gives the correct equilibrium distribution function, Peq(q) =
N exp[−V (q)/kBT ], with N being the normalization constant. In the overdamped limit,
we then have the stationary current as

J = − 1

λ(q)

[
V ′(q) +

d

dq

(
G2(q)

λ(q)

)]
Pst(q). (21)

Integrating the above equation, we have the expression of stationary probability distribution
in terms of stationary current

Pst(q) = e−φ(q)

G2(q)/λ(q)

[
G2(0)

λ(0)
Pst(0) − J

∫ q

0
λ(q ′) eφ(q ′) dq ′

]
, (22)

where

φ(q) =
∫ q

0

V ′(q ′)
G2(q ′)/λ(q ′)

dq ′ =
∫ q

0

V ′(q ′)
kBT + Dγκ2

0 f 2(q ′)
dq ′. (23)

We then consider a symmetric periodic potential with periodicity 2π, V (q) = V (q + 2π), and
the periodic coupling function with the same periodicity as the potential, f (q) = f (q + 2π).
Now applying the periodic boundary condition on Pst(q), Pst(q) = Pst(q + 2π), and the
normalization condition on stationary probability distribution we have the expression for
stationary current [24]

J = [1 − eφ(2π)]

/{∫ 2π

0

λ(q)

G2(q)
e−φ(q) dq

∫ 2π

0
λ(q ′) eφ(q ′)dq ′ − [1 − eφ(2π)]

×
∫ 2π

0

λ(q)

G2(q)
e−φ(q)

∫ q

0
λ(q ′) eφ(q ′) dq ′ dq

}
. (24)

From the condition of periodicity it is clear that for the periodic potential and the periodic
derivative of coupling function with same periodicity V ′(q)/[G2(q)/λ(q)] is periodic with
same periodicity. This makes the effective potential φ(2π) equal to zero so that the numerator
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Figure 1. Variation of current, J , as a function of phase difference, θ , for different values κ2
0 and

for the parameter set α = 0.5, kBT = 0.1, γ = 1.0 and D = 1.0.

Figure 2. Plot of the generalized potential φ(q) as a function of the coordinate q for different
values of κ2

0 and for the parameter set α = 0.5, kBT = 0.1, γ = 1.0,D = 1.0 and θ = 0.5π .

of equation (24) reduces to zero. Thus, there is no occurrence of current for a periodic
potential and periodic derivative of coupling function with same periodicity and hence there
is no violation of the second law of thermodynamics. The thermodynamic consistency based
on symmetry consideration ensures the validity of the present formalism. Büttiker [25]
have shown that a overdamped particle subjected to a drift force field with sinusoidal space
dependence and also a sinusoidally modulated space-dependent diffusion with the same period
as the drift experiences a net driving force. The resulting current depends on the amplitude
of the modulation of diffusion and is a periodic function of phase difference between the
sinusoidal drift and the sinusoidal modulation of the diffusion.

Let us consider that the particle is moving in a sinusoidal symmetric potential of the form

V (q) = V0[1 + cos(q + θ)], (25)

where V0 is constant and may be taken as barrier height and θ is the phase factor which can
be controlled externally. The coupling function is chosen as f (q) = q + α cos q, where α is
the modulation parameter. We now calculate the current given by equation (24). In figure 1,
the variation of current as a function of phase difference is shown for different values of the
coupling constant κ0. Since κ0 is the perturbation parameter in our analysis we have kept
its maximum value low, i.e., ∼kBT . For the value of the other parameters we have chosen
a particular set from the complete parameter space. An extensive analysis using the full
parameter space will be given in our future communication. The current shown in figure 1 is
basically due to the phase difference between the symmetric periodic potential and the space-
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dependent diffusion caused by the nonlinear modulation of the heat bath by external noise.
The current does vanish when the phase difference is either zero or integral multiple of π .
When the heat bath is linearly modulated by external noise source, it is easy to observe that the
effective potential φ(q) is integrable and there will be no asymmetry in the effective potential
as the noise in the corresponding Langevin equation appears additively and the diffusion
coefficient becomes space-independent. Thus, when the heat bath is driven nonlinearly by the
external noise agency there is a net directed motion or phase-induced current. This is because
of the fact that when the external noise drives the heat bath nonlinearly the phase bias gives a
tilt to the effective potential φ(q) which makes the transition between left to right and right to
left unequal. In figure 2, we plot the generalized potential φ(q) for various coupling constant
κ2

0 . The phase difference (hence the nonlinear driving of the heat bath) breaks the detailed
balance of the system. When the phase difference is zero or the heat bath is driven linearly
there is no net drift velocity. Thus, when we drive the heat bath linearly with δ-correlated
external noise, even in the presence of phase difference between V (q) and f ′(q), there is no
net current. For net drift, apart from phase difference, nonlinear driving of the heat bath is
required. This is the central result of this paper.

In conclusion, we have proposed a new microscopic analysis to study the generation of
directed motion for a nonlinearly driven heat bath by an external noise. Making use of a
perturbative treatment we have derived an effective Langevin equation with space-dependent
dissipation and multiplicative noise. Using the corresponding Fokker–Planck–Smoluchowski
equation with a space-dependent diffusion coefficient, we have checked the thermodynamic
consistency condition and have shown that to observe a phase-induced current one necessarily
needs a nonlinear driving of the heat bath by an external Gaussian noise. In our future venture
in this direction, we wish to compare our analytical result with stochastic simulation using the
complete parameter space.
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[22] van Kampen N G 1976 Phys. Rep. 24 171
[23] Novikov E A 1965 Sov. Phys.—JETP 20 1290
[24] Risken H 1989 The Fokker–Planck Equation (Berlin: Springer)
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